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[1] Peredo et al. (1995) derived a frequently used three-dimensional bow shock model
parameterized by the upstream Alfvénic Mach number from the set of approximately 550
bow shock crossings provided by 17 distinct spacecraft over the period of 1963–1980.
However, several studies reported some systematic biases in the bow shock model
predictions. Therefore we have attempted to improve upon the bow shock model of Peredo
et al. (1995) using their original data set and methodology in an effort to better understand
these effects. We have performed three-dimensional best fits to the bow shock crossings
binned by the upstream Mach numbers MA, MS, and MMS and found that the best fitting
surfaces were best ordered with the MA. In agreement with predictions from the
magnetohydrodynamic theory, the results show that the bow shock surface expands when
the MA decreases. The found dawn-dusk asymmetry in the bow wave is consistent with
previous studies only in the Geocentric Plasma Ecliptic System (GPE) coordinates but not
in the Geocentric Interplanetary Medium (GIPM) coordinates which suggests that the
employed data set is not comprehensive enough for resolving this asymmetry. Nor is the
Mach cone asymmetry resolved in our data set (not even in the GIPM frame). We have
derived two models predicting the statistical position and shape of the bow shock in the
GPE or GIPM coordinates. Error analysis shows that the GPE-based model is more accurate
and applicable for MA = 3–20 except the nose region where the model underestimates the
bow shock position for MA < 5. A direct comparison of the model predictions with 5870
IMP 8 bow shock crossings demonstrated high accuracy of predictions and, for the GPE-
based model, an exceptional stability of predictions even under extreme upstream
conditions. Indeed, the new GPE-based bow shock model is more accurate and equally or
more stable than the Formisano (1979), Němeček and Šafránková (1991), Farris and
Russell (1994), Cairns and Lyon (1995), Peredo et al. (1995), or Verigin et al. (2001)
models.
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1. Introduction

[2] Interaction of the supersonic solar wind with Earth’s
magnetosphere (magnetopause) creates fast mode magneto-
sonic waves that travel back upstream, combine and steepen
to form the bow shock wave. The bow shock formation,

position and variations have been extensively studied and
modeled for more than four decades [e.g. Walters, 1964;
Spreiter et al., 1966;Binsack and Vasyliunas, 1968;Fairfield,
1971; Spreiter and Rizzi, 1974; Formisano, 1979; Slavin and
Holzer, 1981; Slavin et al., 1984, 1996; Farris et al., 1991;
Němeček and Šafránková, 1991; Farris and Russell, 1994;
Cairns and Grabbe, 1994; Cairns et al., 1995; Cairns and
Lyon, 1995, 1996; Peredo et al., 1995; Bennett et al., 1997;
Petrinec and Russell, 1997; De Sterck et al., 1998;
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Fairfield et al., 2001; Verigin et al., 2001, 2003; Chao et
al., 2002; Chapman and Cairns, 2003; Dmitriev et al.,
2003; Chapman et al., 2004; Merka and Szabo, 2004].
Many of the previous investigations revealed that the bow
shock shape and position are controlled primarily by solar
wind ram pressure psw [Binsack and Vasyliunas, 1968;
Formisano, 1979], by upstream Mach number(s) [e.g.,
Spreiter et al., 1966; Slavin and Holzer, 1981; Farris and
Russell, 1994; Cairns and Grabbe, 1994; Fairfield et al.,
2001; Verigin et al., 2003; Chapman and Cairns, 2003;
Chapman et al., 2004], and by the orientation of the
interplanetary magnetic field (IMF) [Spreiter and Rizzi,
1974; Slavin et al., 1984, 1996; De Sterck et al., 1998;
Kabin, 2001; Merka et al., 2003b; Verigin et al., 2003;
Chapman et al., 2004].
[3] The bow shock model developed by Fairfield [1971],

perhaps the first widely used empirical bow shock model,
represents the average shape and position of the Earth’s bow
shock. The model is, however, based only on observations
made near the ecliptic plane; thus the model is two-dimen-
sional in that it assumes axial symmetry about the solar
wind flow direction. Furthermore, Fairfield [1971] did not
include any corrections to compensate for variations in solar
wind dynamic pressure. Formisano [1979] derived a set of
fully three-dimensional bow shock models. However, the
data set was dominated by a very large number of often
closely spaced HEOS 2 crossings (1980 crossings out of a
total 2499), thus introducing a bias toward high-latitude
observations and the HEOS 2 orbit. Formisano [1979]
addressed the bias by introducing a weighting function
but the technique remained controversial. However, recent
comparative studies of bow shock models justified this
technique and concluded that Formisano’s model is quite
accurate and often performs better than newer bow shock
models [see Šafránková et al., 1999; Merka et al., 2003a,
2005].
[4] Slavin and Holzer [1981] and Slavin et al. [1983,

1984] added significantly to the bow shock crossing data-
base of Fairfield and Formisano, but concentrated upon
two-dimensional models for the purpose of examining
Mach number effects on shock position and making com-
parisons with geodynamics theory. Peredo et al. [1995]
employed this data set to produce three-dimensional models
for bow shock shape and position that take into account
variations in the solar wind dynamic pressure psw, in the
upstream Mach numbers (sonic, Alfvénic, and magneto-
sonic Mach numbers, MS, MA, and MMS, respectively), as
well as the orientation of the IMF.
[5] The bow shock model by Peredo et al. [1995] has

been frequently used even though its prediction is biased by
at least 20% [Šafránková et al., 1999; Merka et al., 2003a,
2005]. Troubled by this deficiency, we have investigated
original documents and found significant discrepancies in
the satellite (bow shock) positions used for the preparation
of the model. Thus, the purpose of this paper is to produce
three-dimensional bow shock model(s) by employing the
data set (with corrected positions) and methodology of
Peredo et al. [1995].
[6] The approach of Peredo et al. [1995], i.e., fitting a

second-order surface to the bow shock crossings binned by
upstream conditions, is very straightforward and eliminates
many assumptions and limitations inherent in other, even

more recent, bow shock models. For example, models by
Farris and Russell [1994] and Cairns and Lyon [1995]
predict only the subsolar point magnetosheath thickness and
the formulae provided by both of these models are empirical
whether they are based on thoughtful theoretical arguments
[Farris and Russell, 1994] or numerical modeling [Cairns
and Lyon, 1995]. More recent bow shock models [e.g.,
Verigin et al., 2001; Chapman and Cairns, 2003] base the
bow shock shape on fits to results from supersonic gas flow
experiments [Verigin et al., 2001] and/or numerical magne-
tohydrodynamic (MHD) simulations [Chapman and Cairns,
2003]. Each approach contains severe limitations: The gas
flow often differs from the magnetized plasma flow; the
MHD simulations assume an impermeable infinitely con-
ducting magnetopause obstacle which is far from reality. On
the other hand, the most severe limitation, when fitting a
surface to an existing database of bow shock crossings, is
the number and distribution of data points available as will
be discussed in the paper. Indeed, the more data points
available, the less restrictions have to be placed on the
parameterization of the fitted surface(s).
[7] The present paper reprocesses the bow shock crossing

database employed by Peredo et al. [1995] using their
methodology. In addition to that, an error analysis is
performed in order to allow a discussion of confidence
limits of the resulting models. The error analysis provides
evidence that, for example, the three-dimensional fits for
Alfvénic Mach numbers MA < 5 are significantly less
reliable due to the sparse data set. The derived models are
compared with IMP 8 bow shock observations to facilitate a
direct comparison with other bow shock models tested by
Merka et al. [2005]. The results show that the newly derived
bow shock models are of similar accuracy as other current
models. Furthermore, the new models perform better for
unusual upstream conditions.
[8] The remainder of this paper is organized as follows:

Key characteristics of the data set are described in section 2.
The data analysis techniques, fitting procedures, and results
are presented in section 3. Results from the analysis and
comparison with results from Peredo et al. [1995] appear in
sections 4.1 and 4.2, while the performance of the new
models and comparison with results of Merka et al. [2005]
are presented in section 4.3. The summary and conclusions
appear in section 5.

2. Data Set

[9] The genesis and evolution of the bow shock list
employed in this study is quite complicated because several
researchers extended and processed the data set during more
than two decades [e.g., Fairfield, 1971; Formisano, 1979;
Slavin and Holzer, 1981; Slavin et al., 1983, 1984; Peredo
et al., 1995]. Our data set, which is practically identical to
the set used by Peredo et al. [1995], includes a collection of
1492 bow shock crossings observed by 17 different space-
craft between November 1963 and November 1980 (see
Table 1). However, only 570 crossings were used due to the
limited availability of upstream parameters. The upstream
parameters were obtained from the OMNI2 database of
hourly averaged solar wind and interplanetary magnetic
field (IMF) data produced by the National Space Science
Data Center (NSSDC). Sonic, Alfvénic, and magnetosonic
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Mach numbers (MS, MA, and MMS) were computed from the
solar wind and IMF data and merged with the bow shock
crossings to produce a data set containing the location and
time of the crossings, solar wind and IMF parameters, and
Mach numbers.
[10] The aberration due to the Earth’s orbital motion has

been removed from the bow shock positions. The nonradial
component of the solar wind velocity is unknown so we
assume purely radial solar wind flow. Therefore, the used
frame of reference can be called the Geocentric Plasma
Ecliptic System (GPE) as defined by Merka and Szabo
[2004]. Figure 1 illustrates the distribution of the 570
crossings in GPE longitude and latitude, while Figure 2
shows a cylindrical projection of the entire data set. Figure 1
clearly demonstrates that the data set consists predominantly
of northern hemisphere crossings and that the number of
crossings for latitudes below �50� is close to zero. Note
that many data points, namely the HEOS 2 and IMP
8 subsets, have been obtained by averaging positions of

several bow shock crossings observed within dozens of
minutes or even several hours. Although this approach is
quite subjective, it was deemed to be necessary in order to
eliminate, or at least to decrease, biases due to shock-
skimming spacecraft orbits which provide significantly
larger number of crossings than other orbits. In Figure 1,
the void around longitudes ±180� corresponds to the mag-
netosphere, so no crossings are present in that region.
[11] In order to test the newly designed bow shock

models, we also employed the extensive IMP 8 bow shock
list which contains 5870 unambiguous bow shock crossings
with upstream magnetic field and plasma parameters
[Merka et al., 2005].

3. Method of Analysis

[12] The present study employs substantially the same
technique as described by Peredo et al. [1995] and adds to it
an error analysis of the bow shock fits. For the reader’s
convenience, we describe the entire method here again and
highlight new extensions and modifications.
[13] In order to establish the average position and shape

of the bow shock for different solar wind and IMF con-
ditions, we attempt to remove effects due to upstream
conditions one at a time. First, effects associated with the
Earth’s orbital motion are removed by rotating into the GPE
coordinates as noted in the previous section. The solar wind
dynamic pressure scales the entire bow shock [e.g., Binsack
and Vasyliunas, 1968; Formisano, 1979]. We account for
the solar wind variations by performing a normalization of
all crossings to the average ram pressure for our data set
according to the relation [e.g., Spreiter et al., 1966; Fairfield,
1971; Holzer and Slavin, 1978]:

rn ¼ ro
nov

2
o

nav2a

� �1
6

ð1Þ

where rn and ro are the normalized and observed distances
to a bow shock crossing, respectively; no, na, vo and va are,
respectively, the observed and average solar wind number

Figure 1. Distribution of bow shock crossings in GPE
longitude and latitude.

Figure 2. Distribution of bow shock crossings in a
cylindrical projection of the GPE coordinates. The positions
are scaled to the average ram pressure.

Table 1. Numbers of Available and Used Bow Shock Crossingsa

Spacecraft Dates Data Used

IMP 1 Nov. 63–Feb. 64 30 -
OGO 1 Nov. 64–Dec. 64 9 -
IMP 3 June 65–Jan. 67 124 17
EXP 33 Nov. 66–May 68 48 18
IMP 4 June 67–Dec. 68 160 48
EXP 35 July 67–Sept. 68 21 15
OGO 5 March 68–March 69 83 37
HEOS 1 Dec. 68–Jan. 70 144 22
HEOS 2 Feb. 72–Dec. 73 262 119
Prognoz 1 April 72–Aug. 72 64 27
Prognoz 2 June 72–Nov. 72 59 8
IMP 8 Nov. 73–Nov. 80 224 72
IMP 6 Jan. 74–July 74 108 82
Prognoz 4 Jan. 76–March 76 29 17
Prognoz 5 Nov. 76–April 77 59 30
ISEE 1 Oct. 77–Sept. 79 42 33
Prognoz 7 Nov. 78–Jan. 79 26 25
Total 1492 570

aThe number of bow shock crossings used in the present study is limited
by the availability of the upstream parameters.
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densities and bulk speeds. The average quantities for our
data set are na = 7.0 cm�3, and va = 457.5 km/s.
[14] Upon removal of the solar wind dynamic pressure

effects, we binned the data independently into four ranges
of MA (2–5, 5–8, 8–13, and 13–20), three ranges of MS

(5–7, 7–8, and 8–10), and three ranges of MMS (2–5, 5–6,
6–9). Best fitting three-dimensional second-order bow
shock curves were then derived for each subset according
to the following procedure. A general second-order surface
may be described by the expression

F x; y; zð Þ ¼ a1x
2 þ a2y

2 þ a3z
2

þ 2a4xyþ 2a5yzþ 2a6xz

þ 2a7xþ 2a8yþ 2a9zþ a10

¼ 0 ð2Þ

where~r = (x, y, z) is the position, in GPE coordinates, of a
point on the bow shock surface; the free parameters
(a1. . .a10) are determined by minimizing the root squared
distance between the observed crossings and the surface.
Thus, the task is to minimize the merit function c2 defined
by the relation

c2 ¼
XN
i¼1

Fi

rFi

� �2
ð3Þ

where N is the number of crossings at positions~ri = (xi, yi,
zi). It must be noted that the approach of Peredo et al.
[1995] to minimize the distance normal to the boundary is
rather novel and rare in bow shock studies. Other studies
usually minimize the distance to the boundary along one
direction (e.g., in the direction of increasing z, or of
increasing (y2 + z2)1/2 for axially symmetric models).
[15] The minimization of the merit function c2 is accom-

plished by the Levenberg-Marquardt method [Marquardt,
1963] for nonlinear least squares fitting. For more details
about the implementation of the fitting method, the reader is
referred to Appendix B of Peredo et al. [1993] and section 2
of Peredo et al. [1995].
[16] Peredo et al. [1995] assumed north-south symmetry

of the fitted bow shock surface, and set the coefficients a5,
a6, and a9 identically equal to zero because of a lack of
crossings with latitude below �50�. Furthermore, they set
a2 = 1. In order to closely follow the method of Peredo et al.
[1995], the results presented below are also limited to bow
shock shapes which assume north-south symmetry.
[17] To separate variability due to IMF and Mach number

effects, both Peredo et al. [1995] and the present study
rotate all bow shock crossings into Geocentric Interplane-
tary Medium (GIPM) coordinates [Bieber and Stone, 1979]
where the Bz component of the IMF vanishes. The resulting
data set was again binned according to MA, MS, and MMS

values and new best fitting surfaces were derived.
[18] Every fitting procedure should be accompanied by an

error analysis which establishes confidence limits of the
results. The original work of Peredo et al. [1995] lacked a
thorough error analysis. Thus, the present study estimates
the standard errors of the fitted parameters a1, a3, a4, a7, a8,
and a10 by the bootstrap method proposed by Efron [1979].
The bootstrap method is a general methodology for non-
parametrically estimating the statistical errors and the im-

plementation is quite straightforward [see Kawano and
Higuchi, 1995]. There remains one ad hoc parameter for
an actual application of the bootstrap method, namely the
number of bootstrap trials M. The number of bootstrap trials
usually does not exceed 2000 [Kawano and Higuchi, 1995,
and references therein] and this number is used in the
present study.

4. Results

4.1. Fitted Bow Shock Surfaces

[19] The parameters ai characterizing the best fitting bow
shock curves are listed in Table 2 including their standard
errors estimated by the bootstrap method. Based on the ai
parameters, we provide the key dimensions of the fitted bow
shock surfaces in a more intuitive form in Table 3. For each
of the data subsets, Table 3 lists the number of bow shock
crossings in the subset, N; the intersection with the axis,
xnose, ydusk, ydawn, and znorth; and three asymmetry ratios,
ydusk/jydawnj, ydusk/znorth, and jydawnj/znorth, describing the
axial asymmetry of the resulting bow shock surfaces.
Individual fits were generated for each bin in MA, MS, or
MMS and for the combined sets for each of these Mach
numbers. The top portions of Tables 2 and 3 correspond to
the sets that were normalized to the average pressure
according to equation 1 and rotated into GPE coordinates
to remove solar wind flow aberration effects, while the
bottom halves of the tables correspond to sets that were
pressure normalized and rotated into GIPM coordinates to
remove effects due to orientation of the IMF.
[20] The uncertainties in all parameters, calculated from

the fitted parameters ai, are estimated via propagation of
error formulas [e.g., Ku 1966]. The propagation of the error
formula for a function g = f(x, y,. . .) of one or more
variables x, y,. . . gives the following estimate for the
standard deviation of g:

s2g ¼
@f

@x

� �2

s2x þ
@f

@y

� �2

s2y þ . . .þ @f

@x

@f

@y
s2xy þ . . . ð4Þ

where sx and sy are the standard deviations of x and y,
respectively, and sxy is the estimated covariance between x
and y variables. We did not include the covariance terms
because of a lack of sufficient data to estimate them (see Ku
[1966] for guidance on what constitutes sufficient data).
[21] The effect of varying MA on the bow shock shape

and position in GPE coordinates is shown in Figures 3, 4,
and 5, where projections of the best fitting bow shock
surfaces are shown for the equatorial, noon-midnight, and
terminator planes, respectively, for several ranges of MA.
The projections of the shock surfaces in the terminator plane
are also presented in the GIPM coordinates in Figure 6. In
these figures, we also present projections of bow shock
crossings from the MA = 2–5 set within 5 RE of the
respective plane, and show a 1 standard deviation uncertainty
region from the bow shock surface. We chose the MA = 2–5
data set in order to illustrate that, for this subset, the irregular
spatial distribution of the data points results in a rather
ambiguous bow shock surface fit. Notice, for example, the
peculiar flaring at the dawn side in Figure 3 or the rapid
increase of the standard error tailward. We attribute both
effects to the use of a rather sparse and irregular data set. It is
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essential to understand that the fitting procedure will (prac-
tically) always find a best fitting surface for a given data set
and it is our responsibility to supply a data set well represent-
ing the sought surface or the resulting fit may be unrealistic,
yet still an accurate fit. Thus for the larger data sets (the higher
Mach number subsets), the fitting procedure provides much

more reliable fits with significantly smaller uncertainties (see
Table 3).
[22] From Figures 3 and 4 (and values in Table 3), we

find that the bow shock stand-off distance (the nose) moves
slightly earthward with decreasing MA, while the flaring of
the bow wave increases. This result qualitatively agrees

Table 3. Characteristic Dimensions of Bow Shock Fits for Various MA, MS, and MMS Conditions

Subset N xnose [RE] ydusk [RE] ydawn [RE] znorth [RE] ydusk/jydawnj ydusk/znorth jydawnj/znorth
GPE Coordinates

MA 2–5 57 11.8 ± 2.1 26.3 ± 1.2 �24.7 ± 1.2 28.3 ± 2.1 1.061 ± 0.005 0.928 ± 0.007 0.874 ± 0.006
5–8 198 12.8 ± 0.7 23.8 ± 0.5 �22.6 ± 0.5 23.9 ± 0.8 1.051 ± 0.001 0.993 ± 0.002 0.944 ± 0.001
8–13 235 13.0 ± 1.1 21.7 ± 0.6 �21.7 ± 0.6 22.7 ± 0.8 0.998 ± 0.001 0.957 ± 0.002 0.959 ± 0.002
13–20 60 12.5 ± 1.2 22.7 ± 0.8 �22.6 ± 0.8 22.6 ± 1.1 1.003 ± 0.002 1.004 ± 0.004 1.001 ± 0.004
2–20 550 12.6 ± 0.5 23.2 ± 0.4 �22.6 ± 0.4 23.5 ± 0.6 1.028 ± 0.001 0.987 ± 0.001 0.960 ± 0.001

MS 5–7 157 12.8 ± 1.3 22.6 ± 0.8 �21.4 ± 0.8 24.0 ± 1.2 1.056 ± 0.003 0.942 ± 0.003 0.892 ± 0.003
7–8 209 13.0 ± 1.1 22.3 ± 0.7 �22.2 ± 0.7 23.1 ± 1.0 1.005 ± 0.002 0.969 ± 0.003 0.965 ± 0.003
8–10 179 12.5 ± 0.6 23.3 ± 0.5 �22.6 ± 0.5 23.0 ± 0.7 1.029 ± 0.001 1.010 ± 0.001 0.981 ± 0.001
5–10 545 12.8 ± 0.6 22.6 ± 0.4 �22.1 ± 0.4 23.4 ± 0.6 1.027 ± 0.001 0.966 ± 0.001 0.941 ± 0.001

MMS 2–5 177 12.6 ± 0.9 24.1 ± 0.7 �22.7 ± 0.7 25.1 ± 1.1 1.063 ± 0.002 0.961 ± 0.003 0.905 ± 0.002
5–6 184 13.1 ± 0.7 22.7 ± 0.5 �22.0 ± 0.5 23.1 ± 0.7 1.029 ± 0.001 0.984 ± 0.001 0.956 ± 0.001
6–9 209 12.6 ± 0.9 22.0 ± 0.6 �21.7 ± 0.6 22.8 ± 0.8 1.015 ± 0.001 0.966 ± 0.002 0.951 ± 0.002
2–9 570 12.6 ± 0.5 23.2 ± 0.4 �22.5 ± 0.4 23.4 ± 0.6 1.033 ± 0.001 0.991 ± 0.001 0.959 ± 0.001

GIPM Coordinates
MA 2–5 57 12.1 ± 2.7 26.7 ± 1.7 �27.9 ± 1.7 25.8 ± 1.9 0.959 ± 0.007 1.037 ± 0.010 1.081 ± 0.011

5–8 198 12.7 ± 0.8 22.9 ± 0.6 �22.9 ± 0.6 24.2 ± 0.9 0.999 ± 0.001 0.944 ± 0.002 0.945 ± 0.002
8–13 235 12.7 ± 0.9 22.1 ± 0.6 �23.2 ± 0.6 22.4 ± 0.9 0.953 ± 0.001 0.988 ± 0.002 1.037 ± 0.002
13–20 60 12.7 ± 1.3 24.0 ± 0.9 �22.8 ± 0.9 21.8 ± 1.1 1.053 ± 0.003 1.098 ± 0.005 1.043 ± 0.005
2–20 550 12.6 ± 0.5 22.9 ± 0.4 �23.3 ± 0.4 23.3 ± 0.6 0.982 ± 0.001 0.982 ± 0.001 0.999 ± 0.001

MS 5–7 157 12.6 ± 1.1 22.7 ± 0.8 �22.5 ± 0.8 24.2 ± 1.1 1.006 ± 0.003 0.938 ± 0.003 0.933 ± 0.003
7–8 209 12.9 ± 1.0 22.9 ± 0.6 �22.8 ± 0.6 22.8 ± 0.9 1.006 ± 0.001 1.004 ± 0.002 0.998 ± 0.002
8–10 179 12.4 ± 0.7 22.4 ± 0.5 �24.0 ± 0.6 22.6 ± 0.9 0.936 ± 0.001 0.991 ± 0.002 1.059 ± 0.002
5–10 545 12.7 ± 0.5 22.8 ± 0.4 �23.1 ± 0.4 23.2 ± 0.5 0.985 ± 0.000 0.981 ± 0.001 0.996 ± 0.001

MMS 2–5 177 12.2 ± 1.0 24.0 ± 0.8 �24.4 ± 0.9 24.9 ± 1.2 0.983 ± 0.002 0.963 ± 0.003 0.980 ± 0.003
5–6 184 13.0 ± 0.7 22.6 ± 0.4 �22.6 ± 0.4 23.0 ± 0.7 0.999 ± 0.001 0.979 ± 0.001 0.980 ± 0.001
6–9 209 12.6 ± 0.9 22.2 ± 0.6 �23.0 ± 0.6 22.1 ± 0.8 0.962 ± 0.001 1.004 ± 0.002 1.044 ± 0.002
2–9 570 12.6 ± 0.5 22.9 ± 0.4 �23.3 ± 0.4 23.1 ± 0.5 0.982 ± 0.000 0.988 ± 0.001 1.006 ± 0.001

Table 2. Parameters for Best Fitting Bow Shock Surfaces for Various MA, MS, and MMS Conditions

Subset a1 a3 a4 a7 a8 a10

GPE Coordinates
MA 2–5 �0.12292 ± 0.57716 0.81092 ± 0.11429 �0.20902 ± 0.14660 28.270 ± 2.966 �0.75985 ± 0.96604 �649.29 ± 36.19

5–8 �0.02996 ± 0.05664 0.93743 ± 0.05399 0.00227 ± 0.02399 21.196 ± 0.697 �0.57751 ± 0.30654 �536.81 ± 18.35
8–13 �0.21644 ± 0.09335 0.91729 ± 0.05016 0.01680 ± 0.03805 19.570 ± 0.914 0.02222 ± 0.28772 �471.21 ± 21.97
13–20 0.04615 ± 0.19012 1.00468 ± 0.08448 0.01286 ± 0.06630 20.280 ± 1.200 �0.03024 ± 0.46548 �512.18 ± 27.12
2–20 �0.04766 ± 0.04981 0.94784 ± 0.03655 0.00761 ± 0.01723 21.034 ± 0.553 �0.31152 ± 0.20116 �524.03 ± 14.65

MS 5–7 �0.27495 ± 0.11823 0.83983 ± 0.06709 0.03671 ± 0.04994 20.676 ± 1.168 �0.59740 ± 0.45694 �485.57 ± 28.02
7–8 �0.13808 ± 0.10356 0.93524 ± 0.06264 0.00711 ± 0.03584 19.949 ± 0.966 �0.05226 ± 0.33378 �496.94 ± 26.24
8–10 0.02125 ± 0.08849 0.99005 ± 0.05001 0.02538 ± 0.02678 20.943 ± 0.632 �0.33222 ± 0.27580 �525.14 ± 16.65
5–10 �0.12758 ± 0.05421 0.90944 ± 0.03617 0.01760 ± 0.01734 20.351 ± 0.527 �0.29289 ± 0.19904 �499.62 ± 14.52

MMS 2–5 0.02089 ± 0.09657 0.86985 ± 0.06654 �0.02636 ± 0.03904 21.566 ± 0.932 �0.71127 ± 0.42788 �546.94 ± 24.71
5–6 �0.22326 ± 0.05686 0.93978 ± 0.04479 0.04812 ± 0.01906 20.536 ± 0.587 �0.32243 ± 0.27833 �499.42 ± 16.28
6–9 �0.01455 ± 0.10758 0.91866 ± 0.05108 �0.02715 ± 0.03980 19.053 ± 0.869 �0.16600 ± 0.29321 �476.28 ± 21.67
2–9 �0.04747 ± 0.05153 0.95009 ± 0.03592 0.01018 ± 0.01737 20.959 ± 0.551 �0.37395 ± 0.20206 �521.72 ± 14.85

GIPM Coordinates
MA 2–5 0.11016 ± 0.66823 1.12084 ± 0.13788 0.15574 ± 0.22337 30.124 ± 5.189 0.57159 ± 1.25443 �744.04 ± 63.95

5–8 0.03033 ± 0.06327 0.89212 ± 0.05361 �0.00075 ± 0.03166 20.413 ± 0.872 0.01593 ± 0.31484 �522.94 ± 21.54
8–13 �0.10281 ± 0.08835 1.02440 ± 0.06643 �0.02318 ± 0.03601 20.839 ± 0.916 0.54211 ± 0.25349 �512.86 ± 22.80
13–20 �0.00835 ± 0.18655 1.14550 ± 0.09652 0.05188 ± 0.06135 21.537 ± 1.385 �0.60097 ± 0.55547 �546.88 ± 32.75
2–20 �0.01663 ± 0.04247 0.98133 ± 0.03981 �0.00800 ± 0.01931 21.147 ± 0.586 0.20428 ± 0.20098 �532.21 ± 14.66

MS 5–7 �0.04622 ± 0.08829 0.87544 ± 0.06247 �0.03965 ± 0.04587 20.645 ± 1.251 �0.06869 ± 0.46986 �511.36 ± 28.99
7–8 �0.06953 ± 0.08001 1.00212 ± 0.06691 �0.03674 ± 0.03516 20.664 ± 1.021 �0.06742 ± 0.27145 �523.12 ± 23.96
8–10 0.01846 ± 0.07330 1.04977 ± 0.07122 0.03328 ± 0.03053 21.479 ± 0.784 0.77266 ± 0.29949 �537.66 ± 21.48
5–10 �0.02547 ± 0.04634 0.97659 ± 0.03809 �0.00660 ± 0.01850 20.950 ± 0.562 0.17438 ± 0.19552 �526.03 ± 13.97

MMS 2–5 0.22505 ± 0.10446 0.94307 ± 0.07333 0.01017 ± 0.05517 22.593 ± 1.452 0.21240 ± 0.50298 �585.90 ± 33.18
5–6 �0.15450 ± 0.05208 0.95938 ± 0.04679 0.00500 ± 0.02482 20.556 ± 0.689 0.01043 ± 0.24338 �509.26 ± 15.72
6–9 0.00192 ± 0.11535 1.04887 ± 0.06302 0.00345 ± 0.03946 20.278 ± 0.834 0.44115 ± 0.28023 �510.95 ± 22.61
2–9 �0.01458 ± 0.04249 0.99424 ± 0.03767 �0.00859 ± 0.01902 21.176 ± 0.565 0.21311 ± 0.19729 �532.81 ± 13.85
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with Peredo et al. [1995]. However, upon closer scrutiny we
find that the changes of the bow shock stand-off distance are
well within one standard deviation error bar which means
that the changes of xnose for varying Mach numbers MA, MS,
or MMS are statistically unresolved (Table 3).
[23] At low Mach numbers, the shock wave becomes

weaker and the entire shock is found farther from Earth so
that the deflection of the solar wind flow around the
obstacle can still occur [e.g., Spreiter et al., 1966; Farris
and Russell, 1994; Cairns and Grabbe, 1994; Fairfield et
al., 2001] but the results presented in Table 3 suggest
approximately constant or slightly decreasing xnose. It has
been shown in MHD simulations [Spreiter and Rizzi, 1974;
Cairns and Lyon, 1995; De Sterck et al., 1998; Kabin, 2001;
Chapman et al., 2004] and observations [Merka et al.,
2003b] that the bow shock standoff distance can actually
decrease with decreasing MA when qBv ! 0� where qBv is
the angle between the IMF and solar wind velocity vectors.
The IMF orientation of qBv < 20� is rather unusual and does
not dominate our data set so we can exclude this effect. We
propose to explain the found behavior of xnose by the orbital
bias skewing the resulting xnose dependence on Mach
numbers. There is a lack of spacecraft with orbits system-

atically covering the region at the bow shock nose at radial
distances between approximately 15 and 30 RE which is
where we would expect the bow shock position for MA < 5.
[24] Peredo et al. [1995] reported dawn-dusk bow shock

asymmetries consistent with the asymmetry predicted by

Figure 3. Comparison of the equatorial projection (Z = 0)
of the best fitting bow shock curves for different ranges of
MA. These curves correspond to crossings that were
pressure normalized and rotated into GPE coordinates. For
theMA = 2–5 bin, the corresponding data points within 5 RE

of the plane are displayed and the shaded band depicts one
standard deviation uncertainty for the bow shock curve.

Figure 4. Same as Figure 3, but for the noon-midnight
plane.

Figure 5. Same as Figure 3, but for the terminator plane.
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Walters [1964] as a consequence of the orientation of the
IMF and asymmetries in the magnetic field line draping
pattern. Walters [1964] predicted that for the IMF oriented
along the Parker’s spiral, the bow shock flares out more at
the dusk flank than at the dawn flank. However, the dawn-
dusk asymmetry displayed in Figures 5 and 6 and quantified
in Table 3 qualitatively agree with the predicted effect only
for the GPE data set. For the GIPM data set we indeed find
an opposite dawn-dusk asymmetry. Note that the dawn-dusk
asymmetry should be more apparent for the GIPM data set
because in this coordinate system the IMF points exactly
duskward in the Y-Z plane at all times.
[25] Theory and observations indicate that the bow shock

asymptotically approaches the magnetosonic Mach cone
[e.g., Landau and Lifshitz, 1959; Romanov et al., 1978;
Slavin et al., 1984; Spreiter and Stahara, 1985; Verigin et
al., 2003]. Thus the bow shock cross section at large
distances downstream from Earth resembles the outermost
curve in the phase velocity diagram for the hydromagnetic
waves, commonly known as a Friedrichs diagram [see
Peredo et al., 1995; Verigin et al., 2003]. The most
convenient coordinate system allowing to resolve the Mach
cone asymmetries is the GIPM reference frame because the
IMF points duskward in the Y-Z at all times. In contrast to
the work of Peredo et al. [1995], we find that the north-
south shock dimension is smaller than the dawn-dusk
dimension in the terminator plane (Figure 6) which is
indeed an opposite effect to a bow shock shape approaching
the Mach cone (in GIPM coordinates the north-south
dimension should be larger). Slavin and Holzer [1981]
looked for this asymmetry in the Earth bow shock using
IMP 4 crossings, but failed to find a significant effect.
Merka and Szabo [2004] also failed to find a significant
effect even though they scrutinized more than 2000 IMP
8 bow shock crossings. Interestingly, the ion flux in the
magnetosheath also exhibits dawn-dusk asymmetry that
does not appear to be controlled by the IMF [Paularena

et al., 2001; Němeček et al., 2003], however we could not
establish a direct connection of the magnetosheath asym-
metry with the bow shock shape asymmetry found here. In
agreement with Slavin and Holzer [1981] and Merka and
Szabo [2004], we conclude that the bow shock’s shape at
the terminator is determined primarily by the obstacle’s
shape, and thus the Mach cone asymmetries are easily
masked by uncertainties arising from irregular bow shock
sampling and subset selection.
[26] The north-south dimension of the best fitting bow

shock surfaces in GPE coordinates is up to 10% larger than
the dawn-dusk dimension, while rotation into GIPM coor-
dinates reduces this asymmetry by a few percent. The north-
south intersection with the Z axis is well ordered with Mach
numbers and decreases with increasing Mach numbers. On
the other hand, the dawn-dusk dimension is less ordered
with Mach numbers but still generally decreases with
increasing Mach numbers.
[27] We conclude that of the three Mach numbers con-

sidered, the Alfvénic Mach number yields the better order-
ing of bow shock characteristics because it covers a wider
range of values than the sonic and magnetosonic Mach
numbers even though the ordering is comparable within the
same value ranges of MA, MS, and MMS. Contrary to the
Peredo et al. [1995] study, we do not find that rotating into
GIPM coordinates provides significant benefits: (1) the
ordering is slightly worse than for GPE coordinates; and
(2) the fits fail to resolve expected IMF effects.

4.2. New Bow Shock Models

[28] Peredo et al. [1995] derived a bow shock model
explicitly parameterized by MA for their set of bow shock
crossings that was pressure-normalized and rotated into
GIPM coordinates. They fitted a second-order polynomial
through the bow shock surface parameters ai (i = 1, 3, 4, 7,
8, 10) to describe the variations in ai with MA. However, the
present study has not found sufficient justification for the
use of the GIPM coordinates. Thus, we will derive new
models for the sets of pressure normalized bow shock
crossings in both GPE and GIPM coordinates.
[29] Figures 7 and 8 show the variations of ai with MA for

the sets in GPE and GIPM coordinates. Note that for each
MA subset, the mean Alfvénic Mach number MA and the
standard deviation sMA

have been calculated. For the four
MA subsets in both the GPE and GIPM coordinates, the
mean Alfvénic Mach numbers MA are: 4.1 ± 0.8, 6.7 ± 0.8,
10.1 ± 1.4, and 15.6 ± 1.9. Thus, the diamonds representing
values of the ai parameters are located at MAi and the
horizontal error bars represent one standard deviation inter-
val around each MAi. The vertical error bars show one
standard deviation interval around each ai.
[30] It is important to recognize that in spite of binning

the data for quite wide intervals of MA, the majority of data
points falls within much narrower intervals. This is espe-
cially critical in the low MA bin (2–5) where the bow shock
response to the MA changes is more pronounced than for
higher Alfvénic Mach numbers. It would be a mistake to
calculate the mean MA based on the interval boundaries and
not from the actual distribution of MA within the particular
subset.
[31] We have investigated several functional forms de-

scribing the variations in each ai with MA. Our goal was to

Figure 6. Same as Figure 5, but for the data rotated in the
GIPM coordinates.
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obtain simple functional forms while keeping the errors as
little as possible. Finally, we chose to express theMA control
of the bow shock position and shape in the ai parameters as

a1 ¼ b1;1 þ b1;2MA

a3 ¼ b3;1 þ b3;2MA

a4 ¼ b4;1 þ b4;2MA

a7 ¼ b7;1 þ b7;2MA þ
b7;3

MA � 1ð Þ2

a8 ¼ b8;1 þ b8;2MA

a10 ¼ b10;1 þ b10;2MA þ
b10;3

MA � 1ð Þ2

ð5Þ

where the bij coefficients together with their uncertainties
are summarized in Table 4. These functional forms are

depicted as gray curves in Figures 7 and 8. Note that the
chosen functional forms (5) are not physics-based except
the functions for the a7 and a10 parameters which were
motivated by the fact that the shock should move to infinity
when MA ! 1 [Landau and Lifshitz, 1959]. Our attempts
(not shown) to derive other physics-based fits to the
parameters ai led to significantly higher uncertainties than
the functional forms defined by (5).
[32] Table 5 summarizes the characteristic dimensions of

the model bow shocks for selected values of MA in the same
format as Table 3 to facilitate comparison between model
and best fitting bow shock surfaces. Table 5 clearly shows
that, in agreement with our expectations, the bow shock
surface expands (ydusk, ydawn, and znorth increase) and
becomes blunter with decreasing upstream Alfvénic Mach
number MA. However, the bow shock stand off distance
does not change substantially. The xnose distance, normal-
ized to the average ram pressure, decreases (increases) with
decreasing MA for the GPE (GIPM) data set but the change

Figure 7. Dependence on Alfvénic Mach number MA of the parameters a1, a3, a4, a7, a8, and a10 for
best fitting bow shock surfaces in GPE coordinates. The gray curves present best fits using functional
forms defined by equation (5).
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is statistically insignificant because it remains within one
standard deviation. Note that the uncertainties quickly
increase when MA approaches the value of 2. This is not
surprising because the ai parameters of the best fitting bow
shock surface for the MA = 2–5 subset also bear greater
uncertainties than the other subsets (see Tables 2 and 3).
Furthermore, additional errors have been introduced when
deriving the best fits to the dependence of ai on MA.
[33] After a thorough analysis of the estimated errors, we

come to the conclusion that in order to decrease them, a
more comprehensive data set should be employed which
would allow to perform finer binning, especially for Mach
numbers below 5. Availability of more data points in each
bin would reduce uncertainties and the finer binning would
provide better guidance on what kind of functional forms to
use, possibly basing the function on shock physics, con-
tributing to a lowering of the errors. Furthermore, a larger
data set will allow to account for more parameters than one
(MA) after the pressure normalization and rotation into the
coordinate system of choice. For example, Merka and
Szabo [2004] demonstrated that the shock’s location is

influenced by the orientation of the Earth’s magnetic dipole
and by the IMF orientation expressed with the qBv angle,
and that the magnitude of those effects are comparable to
MA-induced changes in bow shock position for medium and

Figure 8. Same as Figure 7, but in GIPM coordinates.

Table 4. Coefficients bij Describing Variation in the Bow Shock

Surface Parameters ai (i = 1, 3, 4, 7, 8, 10) With MA

i bi,1 bi,2 bi,3

GPE Coordinates
1 0.0063 ± 0.1649 �0.0098 ± 0.0196
3 0.8351 ± 0.0973 0.0102 ± 0.0100
4 �0.0298 ± 0.0627 0.0040 ± 0.0072
7 16.39 ± 2.94 0.2087 ± 0.2280 108.3 ± 43.1
8 �0.9241 ± 0.5913 0.0721 ± 0.0591
10 �444.0 ± 59.2 �2.935 ± 4.834 �1930 ± 618

GIPM Coordinates
1 0.1089 ± 0.1727 �0.0146 ± 0.0197
3 0.8063 ± 0.1062 0.0203 ± 0.0112
4 �0.0302 ± 0.0715 0.0032 ± 0.0075
7 14.35 ± 4.03 0.4555 ± 0.2990 111.2 ± 67.3
8 0.6111 ± 0.6607 �0.0397 ± 0.0675
10 �343.6 ± 75.7 �12.306 ± 6.058 �3290 ± 968
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large values of MA. Provided that a large data set were
available, we could separate the dipole tilt, qBv and MA

effects from each other, parameterize their influences prop-
erly, and then study lower order effects such as, for
example, the Mach cone asymmetries at the terminator.
[34] In summary, the new models describe the bow shock

surface by equation (2), where ~r = (x, y, z) represents the
positional vector of a surface point in the GPE or GIPM
coordinate system, rescaled to the average solar wind
dynamic pressure according to equation (1). Although the
resulting models provide a description of the bow shock
shape and location for arbitrary values of PSW, IMF and MA,
we recommend to use the models only for MA values of 3–
20 and at X > �20 RE (rescaled to the average pressure).
Furthermore, the models tend to underestimate bow shock
nose positions for MA values of less than 5.

4.3. Dependence on Upstream Parameters and
Comparison With Other Bow Shock Models

[35] In order to estimate the performance of the newly
derived bow shock models, we employed 5870 IMP 8 bow
shock crossings and compared them to the models’ predic-
tions using the methodology described by Merka et al.
[2003a] and Merka et al. [2005]. Note that these bow shock
crossings are not averaged as in the set used in the previous
sections of this study. For each observed bow shock
crossing, we have calculated the bow shock position pre-
dicted by each model, RM. The ratio of the predicted to
observed bow shock positions RM/RO serves as a measure of
the prediction accuracy. A Gaussian fit to the probability
distributions of RM/RO was used to judge the model validity.
[36] Figures 9, 10, 11, and 12 depict variations in the

models’ predictions as a function of IMF and solar wind
parameters. The squares in Figures 9–12 denote the center
positions of the RM/RO distribution fits, and the vertical
error bars show the half-widths. The probable errors of the
fits are shown as circles with the relevant scale on the right
side of the particular panel. The first fit in each panel
presents predictions for all data points while the others
correspond to specific upstream conditions as described by
the labels. In order to facilitate comparison, gray lines are
drawn through the values corresponding to the entire data
set. Note that a perfect agreement of the predictions with

observations would be RM/RO = 1; in order to aid the eye,
dashed lines delimit the interval within ±5% from perfect
agreement.
[37] Before discussing the performance of the new bow

shock models, we need to establish the scope of terms
average and unusual/extreme IMF/solar wind conditions
within the present paper as introduced by Merka et al.
[2003a, 2005]. The average conditions are the prevailing, or
the most frequently observed, IMF/solar wind properties in
the IMP 8 data set (B < 10 nT, jBXj < 5 nT, jBYj < 5 nT,
jBZj < 5 nT, MA > 4.5, MS > 5.5, MMS > 4, 3 cm�3 < n <
15 cm�3, and 1.5 nPa < Pram < 6 nPa) while the unusual/
extreme conditions denote plasma and IMF properties
outside of the ranges for these average conditions.
[38] We judge the model’s performance from two angles:

(1) Prediction accuracy, where the perfect agreement of the
predictionswith observationswould beRM/RO=1; and (2) the

Table 5. Characteristic Dimensions of the Model Bow Shock for Various MA Conditions

MA xnose [RE] ydusk [RE] ydawn [RE] znorth [RE] ydusk/jydawnj ydusk/znorth jydawnj/znorth
GPE Coordinates

2 9.5 ± 4.1 49.6 ± 6.4 �48.0 ± 6.4 52.8 ± 7.5 1.032 ± 0.037 0.940 ± 0.033 0.910 ± 0.032
3 10.6 ± 3.3 31.3 ± 2.8 �29.9 ± 2.8 32.9 ± 3.5 1.047 ± 0.018 0.952 ± 0.017 0.909 ± 0.017
4 11.5 ± 2.8 26.5 ± 1.9 �25.3 ± 1.9 27.7 ± 2.5 1.050 ± 0.012 0.959 ± 0.012 0.913 ± 0.012
5 12.1 ± 2.7 24.6 ± 1.7 �23.5 ± 1.7 25.6 ± 2.3 1.048 ± 0.011 0.964 ± 0.012 0.920 ± 0.011
8 12.8 ± 3.2 22.9 ± 1.8 �22.2 ± 1.8 23.5 ± 2.3 1.031 ± 0.013 0.972 ± 0.015 0.943 ± 0.014
10 12.9 ± 3.5 22.5 ± 1.9 �22.1 ± 1.9 23.0 ± 2.5 1.018 ± 0.015 0.977 ± 0.018 0.959 ± 0.017
15 13.0 ± 4.4 22.2 ± 2.4 �22.5 ± 2.4 22.4 ± 2.9 0.986 ± 0.022 0.987 ± 0.028 1.001 ± 0.028
20 12.9 ± 5.3 22.0 ± 2.8 �23.1 ± 2.9 22.1 ± 3.4 0.955 ± 0.029 0.996 ± 0.040 1.043 ± 0.043

GIPM Coordinates
2 14.4 ± 8.5 60.0 ± 8.1 �61.0 ± 8.1 65.7 ± 9.7 0.983 ± 0.034 0.912 ± 0.033 0.928 ± 0.034
3 13.7 ± 6.1 34.2 ± 3.7 �35.2 ± 3.7 37.2 ± 4.6 0.972 ± 0.022 0.918 ± 0.023 0.945 ± 0.024
4 13.1 ± 4.5 27.1 ± 2.5 �28.0 ± 2.5 29.2 ± 3.2 0.968 ± 0.016 0.927 ± 0.018 0.958 ± 0.019
5 12.8 ± 3.9 24.3 ± 2.2 �25.1 ± 2.2 25.9 ± 2.8 0.967 ± 0.015 0.937 ± 0.017 0.969 ± 0.018
8 12.6 ± 3.9 22.3 ± 2.2 �22.9 ± 2.2 22.9 ± 2.6 0.974 ± 0.018 0.972 ± 0.022 0.997 ± 0.023
10 12.7 ± 4.2 22.3 ± 2.4 �22.7 ± 2.4 22.4 ± 2.8 0.981 ± 0.021 0.995 ± 0.026 1.014 ± 0.027
15 13.0 ± 5.0 23.3 ± 2.8 �23.4 ± 2.8 22.2 ± 3.1 0.999 ± 0.029 1.053 ± 0.038 1.055 ± 0.038
20 13.3 ± 5.9 24.7 ± 3.3 �24.3 ± 3.3 22.2 ± 3.5 1.015 ± 0.037 1.109 ± 0.052 1.093 ± 0.051

Figure 9. The ratios of predicted and observed bow
shock radial distances with respect to the IMF changes for
the new GPE-based bow shock model. For a description
see section 4.3.
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stability of the predictive capabilities for various IMF/solar
wind parameter ranges. Ideally, the model would be deemed
stable, or rather its predictive capabilities, if the prediction
accuracy was the same for all ranges of a particular IMF/solar
wind parameter.
[39] In Figures 9–12, it is readily apparent that the

accuracy of the models is outstanding for the average
conditions. Indeed, the predictions agree with the observa-
tions within 1% for the entire data set. On the other hand,
we find larger changes in prediction accuracy (up to 8%)
between the average and unusual IMF subsets (Figures 9
and 11). The model performance is remarkably good and

stable for the plasma parameters (Mach numbers, plasma
density, and solar wind dynamic pressure) as presented in
Figures 10 and 12. The performance of the GIPM model is
marginally better (by 1–2%) than of the GPE model when
testing for IMF parameters but is significantly worse (by 3–
5% and with larger error bars) when testing for the Mach
numbers. In the light of the facts that the GIPM model
compares worse with the IMP 8 bow shock crossings and
that its predicted bow shock position is fraught with higher
uncertainty then predictions by the GPE model, we consider
the GPE model capable of providing marginally more
accurate predictions of bow shock position.
[40] The method employed to test the models and the

format used in Figures 9–12 allow us to compare directly
the performance of the two new models with bow shock
models examined by Merka et al. [2005] because the
method, figure format and data sets are the same. Merka
et al. [2005] examined six bow shock models: Formisano
[1979]; Němeček and Šafránková [1991]; Farris and Russell
[1994];Cairns and Lyon [1995];Peredo et al. [1995];Verigin
et al. [2001] referred as F79, NS91, FR94, CL95, P95, and
V01, respectively. Comparison of Figures 9–12 with Figures
3 and 4 of Merka et al. [2005] immediately reveals that the
newmodels aremore accurate although theGIPMmodel may
be less reliable due to substantial spread of the predictions,
and that their response to extreme upstream conditions is
equal or better than either of the six previous bow shock
models. We conclude that the best agreement between bow
shock model predictions and IMP 8 observations is obtained
for a wide range of upstream conditions if we use the
new GPE bow shock model (out of the F79, NS91,
FR94, CL95, P95, V01, and the two newly derived
models).
[41] An important enhancement in the new bow shock

models is the estimation of errors that provides more
insight as to where to expect the bow shock. Normally,
bow shock models do not provide any information about
the associated uncertainties [e.g., the models examined by

Figure 10. The ratios of predicted and observed bow
shock radial distances with respect to the changes in
selected plasma parameters for the new GPE-based bow
shock model. For a description see section 4.3.

Figure 11. Same as Figure 9, but for the new GIPM-based
bow shock model.

Figure 12. Same as Figure 10, but for the new GIPM-
based bow shock model.
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Merka et al. [2005]). Without a proper error analysis,
statistically insignificant features may be incorrectly inter-
preted and attributed to real structures and/or processes.
For example, without the error analysis, one could argue
that the bow shock stand off distance decreases when MA

decreases (see Figures 3 and 4). On the other hand, our
error analysis shows that the observed decrease is statis-
tically insignificant.
[42] The calculated model errors in Table 5 reflect the

uncertainties embedded in the model(s) due to several
contributing factors. First, the observed bow shock cross-
ings are spread around the best fit model surface because the
shock is practically never in an equilibrium position, groups
of bow shock crossings were averaged when preparing the
data set, and the best fit surface is only an approximation of
the real unknown bow shock surface. Furthermore, the
fitting procedure was performed for subsets of bow shock
crossing observed under similar but not exactly the same
upstream conditions, which contributes to the spread of data
points around the best fit surface. Next, the uncertainties
increased when we modeled the surface parameters ai with
the functional forms (5). More accurate and physics-based
functional forms could be introduced if the number of
observed bow shock crossings increased significantly.
Table 5 shows that the model errors are significantly larger
whenMA < 3 in comparison toMA > 3 and that the predicted
bow shock nose position is statistically significantly less
accurate then predicted shock locations farther downstream.
[43] In spite of all the efforts, the calculated errors alone

cannot account for all uncertainty sources. Probably the
most important source of uncertainty unaccounted for in the
error calculations is the lack of representativeness in theMA=
2–5 subset of bow shock crossings where the available data
only loosely constrain the best fit surface (see Figures 3
and 4). Furthermore based on theoretical considerations
[Landau and Lifshitz, 1959] and spacecraft observations
[Russell and Zhang, 1992; Cairns et al., 1995; Fairfield et
al., 2001], we argue that the near-Earth orbital trajectories
of the spacecraft providing the bow shock observations did
not allow to observe sufficient number of data points at the
shock nose for low Mach numbers (below 5) and, there-
fore, diminishing the models’ accuracy in this region.

5. Summary and Conclusions

[44] Peredo et al. [1995] derived a frequently used three-
dimensional bow shock model parameterized by the up-
stream Alfvénic Mach number from the set of approximately
550 bow shock crossings provided by 17 distinct spacecraft
over the period of 1963–1980.However, several studies [e.g.,
Šafránková et al., 1999; Merka et al., 2003a, 2005] reported
systematic biases in thePeredo et al. [1995] bow shockmodel
predictions. Thereforewe have improved upon the bow shock
model of Peredo et al. [1995] while using their original data
set andmethodology and applying the bootstrap error analysis
to the fittingmethod [e.g.,Kawano andHiguchi, 1995;Merka
and Szabo, 2004].
[45] We have performed three-dimensional best fits to the

bow shock crossings binned by the upstream Mach numbers
MA, MS, and MMS, and found that the best fitting surfaces
were best ordered with the MA because of the greater
dynamic range in MA. In agreement with predictions from

the magnetohydrodynamic theory, the bow shock surface
expands when MA decreases. The dawn-dusk asymmetry
found in the bow wave is consistent with previous studies in
GPE coordinates but not in GIPM coordinates, suggesting
that the employed data set is not comprehensive enough to
resolve this asymmetry. Nor is the Mach cone asymmetry
resolved in our data set (not even in the GIPM frame).
[46] We have derived two models predicting the statistical

position and shape of the bow shock in GPE or GIPM
coordinates. Error analysis shows that the GPE-based model
is more accurate and applicable for MA = 3–20 except the
nose region where the model underestimates the bow shock
position for MA < 5.
[47] A direct comparison of the model predictions with

5870 IMP 8 bow shock crossings demonstrated high accu-
racy of the predictions and, for the GPE-based model, an
exceptional stability of the predictions even under extreme
upstream conditions. Indeed, the new GPE-based bow
shock model is more accurate and equally or more stable
than the Formisano [1979], Němeček and Šafránková
[1991], Farris and Russell [1994], Cairns and Lyon
[1995], Peredo et al. [1995], or Verigin et al. [2001] models.
[48] The accuracy of the bow shock models could be

greatly improved if the method were applied to a signifi-
cantly larger data set. This would reduce the current orbital
bias at the bow shock nose and would allow for multivariate
parameterization of the shock surface as opposed to MA-
only parameterization. Furthermore, a larger number of bow
shock crossings would likely reduce the fitting errors. Bow
shock crossings observed by IMP 8, WIND, Cluster, Inter-
ball-Tail, and Geotail spacecraft could form the core of such
a data set.
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Merka, J., A. Szabo, J. Šafránková, and Z. Němeček (2003b), Earth’s bow
shock and magnetopause in the case of a field-aligned upstream flow:
Observation and model comparison, J. Geophys. Res., 108(A7), 1269,
doi:10.1029/2002JA009697.

Merka, J., A. Szabo, T. W. Narock, J. D. Richardson, and J. H. King (2005),
Three decades of bow shock observations by IMP 8 and model predic-
t ions , Plane t . Space Sc i . , 53 (1 – 3) , 79 – 84, do i :10.1016/
j.pss.2004.09.031.
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